Nuclear Chemistry Worksheet Half-Life and Nuclear Equations

HALF-LIFE PROBLEMS

1. $^{32}_{15}$ P is used to treat some diseases of the bone. Its half-life is 14 days. What would be

the final mass of 650g of $^{32}_{15}$ P to after decaying for 140 days? GIVENS: t $_{12}$ = 14 days M_{orig} = 650g t = 140 days UNKNOWN: M_{final} = ?

FORMULA: $M_{final} = M_{orig} (1/2)^n$

Note: we don't have an "n" value, but we know the ½ life and we know how much time has passed, so we can calculate the number of ½ lives (which is the n value.)

n = 140 days/14 days per ½ life = 10 half-lives

SOLUTION: $M_{final} = 650g (\%)^{10}$

M_{final}= 650g (0.000976563)

ANSWER: M_{final} =0.63 g

2. A certain isotope has a half-life of 20 days. How long would it take for a sample of this

isotope to decay from 10,000g to 4000g?

GIVENS: $M_{orig} = 10,000g$ $M_{final} = 4000g$ $t_{1/2} = 20 \text{ days}$

UNKNOWN: length of time, t (which is n x 20 days, so solve first for n)

FORMULA: $M_{final} = M_{orig} (\frac{1}{2})^n$ SOLUTION: 4000g = 10,000g (½)ⁿ (simplify) $4000g = 10,000g (\frac{1}{2})^n$ 10,000g 10,000g

 $0.4 = (\frac{1}{2})^n$

log 0.4 = n(log 0.5)

 $\log 0.4 = n(\log 0.5)$ log 0.5 log 0.5

 $\log 0.4 = n$ log 0.5

-0.39794 = n-0.30103

1.32 = n (number of half-lives)

This is not our final answer, b/c we are asked to find how long it would take (time = t.) So, if a $t_{1/2}$ = 20 days for this isotope, then in 1.32 half-lives,

ANSWER: 1.32 half-lives x 20 days per half-life = 26.4 days is how long it would take.

3. Vanadium-49 has a half-life of 330 days. The initial sample of an atom of this isotope is 82g. What would the final mass be after 10 years?