Limiting Reagents and Percentage Yield Worksheet

Consider the reaction

$$I_2O_5(g) + 5 CO(g) ----> 5 CO_2(g) + I_2(g)$$

- a) 80.0 grams of iodine(V) oxide, I2O5, reacts with 28.0 grams of carbon monoxide, CO. Determine the mass of iodine I2, which could be produced?
- b) If, in the above situation, only 0.160 moles, of iodine, \mathbf{I}_2 was produced.
 - i) what mass of iodine was produced?
 - ii) what percentage yield of iodine was produced.
- 2. Zinc and sulphur react to form zinc sulphide according to the equation.

$$Zn + S \longrightarrow ZnS$$

- If 25.0 g of zinc and 30.0 g of sulphur are mixed,
- a) Which chemical is the limiting reactant
- b) How many grams of ZnS will be formed?
- c) How many grams of the excess reactant will remain after the reaction is over?
- Which element is in excess when 3.00 grams of Mg is ignited in 2.20 grams of pure oxygen? 3. What mass is in excess? What mass of MgO is formed?
- How many grams of Al₂S₃ are formed when 5.00 grams of Al is heated with 10.0 grams S?
- When MoO3 and Zn are heated together they react 5.

$$3 \text{ Zn(s)} + 2 \text{ MoO}_3(s) -----> \text{Mo}_2\text{O}_3(s) + 3 \text{ ZnO(s)}$$

What mass of ZnO is formed when 20.0 grams of MoO₃ is reacted with 10.0 grams of Zn?

- Silver nitrate, AgNO3, reacts with ferric chloride, FeCl3, to give silver chloride, AgCl, and ferric nitrate, Fe(NO₃)3. In a particular experiment, it was plannned to mix a solution containing 25.0 g of AgNO3 with another solution containing 45.0 grams of FeCl3.
 - a) Write the chemical equation for the reaction.
 - b) Which reactant is the limiting reactant?
 - c) What is the maximum number of moles of AgCl that could be obtained from this mixture?
 - d) What is the maximum number of grams of AgCl that could be obtained?
 - e) How many grams of the reactant in excess will remain after the reaction is over?
- Solid calcium carbonate, CaCO3, is able to remove sulphur dioxide from waste gases by the reaction:

In a particular experiment, 255 g of CaCO₃ was exposed to 135 g of SO₂ in the presence of an excess amount of the other chemicals required for the reaction.

- a) What is the theoretical yield of CaSO3?
- b) If only 198 g of $CaSO_3$ was isolated from the products, what was the precentage yield of CaSO₃ in this experiment?
- A research supervisor told a chemist to make 100 g of chlorobenzene from the reaction of benzene with chlorine and to expect a yield no higher that 65%. What is the minimum quantity of benzene that can give 100 g of chlorobenzene if the yield is 65%? The equation for the reaction is:

$$C_6H_6 + Cl_2$$
 -----> $C_6H_5Cl + HCl$