•	Energy enters most ecosystems as and leaves as
•	Photosynthesis generates and that the mitochondria of eukaryotes use as for cellular respiration.
•	Cells harvest the chemical energy stored in organic molecules and use it to regenerate, the molecule that drives most cellular work.
•	Respiration has three key pathways:, the, and
Α.	The Principles of Energy Harvest
1.	Cellular respiration and fermentation are catabolic, energy-yielding pathways.
•	The arrangement of atoms of organic molecules represents energy.
•	Enzymes the systematic degradation of organic molecules that are rich in energy to simpler waste products with energy.
•	Some of the released energy is used to do; the rest is dissipated as
•	Catabolic metabolic pathways the energy stored in complex organic molecules.
•	One type of catabolic process,, leads to the partial degradation of sugars in the absence of oxygen.
•	A more efficient and widespread catabolic process,, consumes as a reactant to complete the breakdown of a variety of organic molecules. output output new and a reactant to complete the breakdown of a variety of organic molecules. output new are the site of most of the processes of cellular respiration.
•	Cellular respiration is similar in broad principle to the combustion of gasoline in an automobile engine after is mixed with hydrocarbon fuel.
	is the fuel for respiration. The exl