Balancing Equations and Simple Stoichiometry-KEY

Balance the following equations:

- 1) $1 N_2 + 3 F_2 \rightarrow 2 NF_3$
- 2) $2 C_6H_{10} + 17 O_2 \rightarrow 12 CO_2 + 10 H_2O$
- 3) 1 HBr + 1 KHCO₃ \rightarrow 1 H₂O + 1 KBr + 1 CO₂
- 4) 2 GaBr₃ + 3 Na₂SO₃ \rightarrow 1 Ga₂(SO₃)₃ + 6 NaBr
- 5) $3 \text{ SnO} + 2 \text{ NF}_3 \rightarrow 3 \text{ SnF}_2 + 1 \text{ N}_2\text{O}_3$

Using the equation from problem 2 above, answer the following questions:

- 6) If I do this reaction with 35 grams of C_6H_{10} and 45 grams of oxygen, how many grams of carbon dioxide will be formed?

 When you do this calculation for 35 grams of C_6H_{10} , you find that 113 grams of CO_2 will be formed. When you do the calculation for 45 grams of oxygen, you find that 43.7 grams of CO_2 will be formed. Because 43.7 grams is the smaller number, oxygen is the limiting reagent, forming 43.7 grams of product.
- 7) What is the limiting reagent for problem 6? oxygen
- How much of the excess reagent is left over after the reaction from problem 6 is finished?
 21.5 grams of C₆H₁₀ will be left over.
- 9) If 35 grams of carbon dioxide are actually formed from the reaction in problem 6, what is the percent yield of this reaction? 80.1%