Quantum Numbers Worksheet

1. Label each of the following sets of four quantum numbers as either Valid, which indicates that set is a legitimate set of quantum numbers for an electron, or Invalid, which would indicate that the set is not a possible set of quantum numbers for an electron. (Hint: Check them with the rules on the quantum numbers handout you got)

n	e	m₂	m _s	Valid or Invalid?
1	0	0	1/2	
1	1	+1	-1/2	
2	О	О	-1/2	
2	2	-2	1/2	
2	1	-1	1/2	
3	2	-1	1/2	
3	1	0	0	
3	0	1	1/2	
3	0	0	-1/2	
1	2	-3	1/2	

- 2. An electron is in a certain energy level where the maximum value of the quantum number ℓ = 4. What energy level is the electron in?
- 3. How does the size of a given type of orbital vary with n?
- 4. How many orbitals are there in an h subshell (ℓ =5)? What are their values of m_{ℓ} ?
- 5. Give the complete set of quantum numbers for all the electrons that could populate the 3d subshell of an atom.