| Reaction | Name | Typical
Conditions | Notes [1°, 2° and 3° refers to primary, secondary, tertiary] | |----------|--|-----------------------------------|---| | 1 | Free radical chlorination | Cl ₂ , hγ | Not highly selective | | 2 | Free radical bromination | Br ₂ , hγ | Highly selective for tertiary C-H | | 3 | Elimination [E2] | RO ∕ROH | Best for 2° and 3°, anti stereochemistry | | 4 | Elimination [E1] | polar solvent,
heat | Competes with S _N 1 | | 5 | Alcohol Formation [S _N 2] | [⊝] он / н₂о | Best for 1° alkyl halides; 2° can compete w/ E2 | | 6 | Alcohol Formation [S _N 1] "Solvolysis" | H ₂ O | Best for 3° alkyl halides; rearr possible w/ 2° | | | Ether Formation [S _N 2]
["Williamson Ether Synthes | RO ∕ROH | Best for 1° alkyl halides; 2° can compete w/ E2 | | 8 | Ether Formation [S _N 1]
"Solvolysis" | кон | Best for 3° alkyl halides; rearr possible w/ 2° | | 9 | Thiol formation [S _N 2] | [⊝] sн | S _N 2; best for 1° alkyl halides, 2° OK | | 10 | Sulfide formation [S _N 2] | ⊖ _{SR} | $S_N 2$; best for 1° alkyl halides, 2° OK | | 11 | Ester formation [S _N 2] | RCO ₂ in polar aprotic | $S_N 2$; best for 1° alkyl halides, 2° OK | | 12 | Azide formation [S _N 2] | N ₃ solvent | S _N 2; best for 1° alkyl halides, 2° OK | | 13 | Nitrile formation [S _N 2] | ⊖CN | S _N 2; best for 1° alkyl halides, 2° OK | | 14 | Alkyne formation [S _N 2] | R-C≣C [©] | Best for 1° alkyl halides; 2° can compete w/ E2 |