Organic Chemistry II: Review Worksheet

Chapter 7: Alkenes: Reactions and Synthesis

Chapter 11: Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations In order to more fully understand the nature of reactions of Organic Chemistry, we need to review what happens with reactions with alkenes in Chapter 7 and nucleophilic substitutions in Chapter 11.

1. Rank the carbocations below in order of increasing stability (least stable = 1; most stable = 3). Place the number corresponding to the carbocation's relative stability in the blank below the structure.

Cyclohexene

To answer the questions below consider the following reaction:

When cyclohexene reacts with chlorine in carbon tetrachloride the trans-dihalide is formed.

2. Refer to Cyclohexene. Since the two chlorine atoms add to opposite faces of the cyclohexene double bond, we say that the reaction occurs with:

- a. syn stereochemistry
- b. cis stereochemistry
- c. anti stereochemistry
- d. retention of stereochemistry

Refer to Cyclohexene. The observed stereochemistry of addition of chlorine to cyclohexene is explained by the intermediacy of a:

- a. cyclonium ion
- b. Carbocation
- c. Carbine
- d. chloronium ion

Reaction 7-1

Consider the reaction sequence below to answer the following questions:

4.Refer to Reaction 7-1. In the second step of this reaction sequence, the organomercury compound is treated with sodium borohydride, $NaBH_4$, to yield the alcohol product. This replacement of a carbon-mercury bond with a carbon-hydrogen bond is termed:

a) an oxidation b) a reduction c) a hydroxylation d) a cycloaddition