Chapter 10 Directed Reading	Name
Section 1: From Genes to Proteins	
1. ribonucleic acid (RNA)	c. the process of reading instructions on an RNA
2. uracil	molecule to put together the amino acids that make up
3. transcription	a protein
4. translation	d. the process of transferring a gene's instructions for
5. gene expression	making a protein to an RNA molecule
a. the entire process by which proteins are made	e. a nitrogen base used in RNA instead of the base
b. a molecule made of linked nucleotides	thymine found in DNA
6. Transcription begins when [RNA / RNA polymera	
7. RNA polymerase adds complementary [DNA / RN	
8. In eukaryotes, transcription takes place in the [nuc	
9. What are two differences between transcription an	
10. What determines where on the DNA molecule tra	anscription begins and where it ends?
11. RNA, messenger RNA	
12. codons, genetic code	
Study the following six steps in the synthesis of	
13. The codon in the vacant A site receives the carries the amino acid specified by the codon.	e tRNA molecule with the complementary anticodon. The tRNA
	s reached. The newly made protein is released into the cell.
16. Enzymes help form a peptide bond betwee	hind its amino acid, and moves away from the ribosome.
	site moves over to fill the empty P site. A new codon is present
in the A site, ready to receive the next tRNA and its	
	tRNA carrying a modified form of the amino acid methionine
bind together. The tRNA bonds to the "start" codon	
Section 2: Gene Regulation and Structure	
1. To break down lactose, Escherichia coli need thre	e different, each of which is
coded for by a different gene.	
2. The three genes are located next to each other, and	d all are controlled by the same site.
3. The piece of DNA that overlaps the promoter site	and serves as the on-off switch is called a(n)
4. The group of genes that codes for enzymes involved	ed in the same function, their promoter site, and the operator all
function together as a(n)	·
5. The operon that controls the metabolism of lactose	
6. A(n)	is a protein that binds to an operator and physically
blocks RNA polymerase from binding to a promoter	site.
7. What are enhancers?	
8. Why is there more opportunity for gene regulation	n in eukaryotic cells than in prokaryotic cells?
	ells?
	ells?
11. What are introns and exons?	
12. What happens to mRNA that includes introns? _	
13. What might be the evolutionary advantage of ger	nes being interrupted by introns?
14. Mutations can only be passed on to offspring if the	hey occur in [gametes / body cells].
15. Mutations that change one or just a few nucleotides in a gene on a chromosome are called [random / point] mutations.	
16. If a mutation causes a gene containing the nucleo	otide sequence ACA to become ACT, the mutation is called a
[substitution / deletion] mutation.	
	change from ACGAGA to ACGGA, the mutation is called a(n)
[insertion / deletion] mutation.	
18. If a mutation causes a sequence of nucleotides to a(n) [insertion / deletion] mutation.	change from ACGAGA to ACGAGGA, the mutation is called