Table 3 Selected genetic disorders associated with ADHD | Genetic Condition | Neuroanatomic alteration | Neuropsychological impairments | Gene and/or biochemistry | Ref. | |---|---|--|---|----------| | Neurofibromatosis I | Aqueductal stenosis, hydrocephalus | 30% learning disabilities, 10% mild mental retardation | Caused by mutations in the neurofibromin gene (NF1) | 141 | | Varying degrees of
Holoprosencephaly
(HPE) associated
with mild features | Microcephaly and general abnormalities involving telencephalic and diencephalic structures | Impaired executive functions, attention problems | HPE is caused most frequently by
mutations in SHH, but also in
SIX3, TGIF and ZIC2 | 142 | | Turner Syndrome | Unknown | Girls with Turner syndrome have
significantly more problems with
social relationships and school
progress and were more likely to
meet criteria for ADHD than control
girls | Complex | 143–145 | | Williams Syndrome | In the mice, haploinsufficiency for
Cyln2 encoding CLIP-115, located in
the 1.6 Mb common deletion leads to
brain abnormalities, hippocampal
dysfunction and particular deficits in
motor coordination. Absence of
CLIP-115 also leads to increased
levels of CLIP-170 (a closely related
cytoplasmic linker protein) | Mental retardation (average IQ 56), relative sparing of language, poor visual-motor integration (Range 41–80), hypersensitivity to sound, attention deficit disorder, cocktail party personality | Contiguous gene syndrome with
haploinsufficiency, of multiple
genes including Elastine (ELN),
LIM kinase-1 (LIMK1), and RFC2 | 146, 147 | | Fragile X Syndrome | Cortical and sub-cortical grey matter alterations (caudate, vermis), abnormalities in dendritic arbori_ation of the cortex, alterations in volume of caudate nucleus and in the cerebellar vermix. | Wide range of variability in mental retardation, ADHD symptoms (74%), ODD, impaired executive function, viso-spatial abilities, visuomotor coordination | Unclear, possible several neurotransmitters affected. | 148 | | Smith-Magenis
Syndrome | Ventriculomegaly, dysgenesis of the
cerebellar vermis overlapping with
features of Joubert Syndrome | Speech delay, mental retardation (IQ 20–78), behavioral problems, self-destructive behavior, sleep disturbance, hyperactivity, peripheral neuropathy, decreased pain sensitivity | Caused by an interstitial deletion of 17p11.2 | 149–153 | | Phenylketonuria | Prefrontal cortex dysfunction | Altered executive functions | Alterations of the Dopamine
metabolic pathway as
consequence of PAH alteration | 154–158 | | Fetal alcohol
syndrome | D1 receptors in mesolimbic dopamine system | Difficulties in learning, speed
information, attentional, working
memory and self regulation
processes | Several neurotransmitters are
affected including dopamine,
serotonine norepinephrine,
glutamate, GABA, histamine | 159 | | Deletion 22q11.2
syndrome | Abnormal left/right pattern of caudate nucleus (also seen in ADHD) | 13 of 20 children tested have ADHD,
mainly inattentive or combined type
and/or autism spectrum problems | Suspected the involvement of COMT, contained in the deleted region | 160–162 | | Traumatic Brain
Injury (TBI) | According with severity, lesion
locali: ation and time. Frontal lobe
and basal ganglia lesions specially
associated with ADHD phenotype | ADHD symptoms, depression,
executive dysfunction, memory and
behavioral alterations | Disruption of frontobasal ganglia pathways among other alterations | 163–166 |