Hwa Chong Institution

Chemical bonding (Worksheet 4)

Section A:

Answer 'True' or 'False' to the following statements.

Question	T/F		
Metallic bonding is a kind of ionic bonding because ionic bonds exist between the			
cations and the delocalized electrons.			
Metallic bonding involves electrons being shared; hence it is a kind of covalent	F		
bonding.			
Metals are malleable because the atoms can slide over each other easily when a	Т		
force is applied.			
Metals are malleable because the forces of attraction between metal atoms are	F		
weak.			
In a metal, the electrons are able to move freely and randomly among the cations.			
Metallic bonding is weak because the positively charged ions repel one other.	F		
The electrons in metals are able to move only when heat or electricity is supplied.			
All metals have high melting and boiling points.			
Only metals can conduct electricity.			
When an electrical current is passed through the metal, electrons repel each other,	F		
thus the metal is able to conduct electricity.			
When an electrical current is passed through the metal, the moving ions in the	F		
metal are able to carry the current from one end to the other.			

Section B:

Sodium, magnesium and aluminium belong to the same period on the Periodic Table. Some of the properties of the metals are given below.

Metals	Melting point/°C	Boiling point/°C	Electrical Conductivity/ $cm^{-1}\Omega^{-1}$	Thermal Conductivity/ W/cmK
Sodium	98	883	2.1 × 10 ⁵	1.41
Magnesium	650	1091	2.3 × 10 ⁵	1.56
Aluminium	660	2519	3.8×10^{5}	2.37

Refer to the above table and the Periodic table and answer the questions below.

1. Write down the electronic configuration of the 3 metals, sodium, magnesium and aluminium.

Na: $1s^22s^22p^63s^1$ (2, 8, 1); Mg: $1s^22s^22p^63s^2$ (2, 8, 2); Al: $1s^22s^22p^63s^23p^1$ (2, 8, 3)

2. How many valence electrons do they have?