Directions:

Show all work on a separate piece of paper. Place your final answer on this sheet.

1. Given
$$g(x) = \frac{3}{x-1}$$

a. Evaluate and simplify completely

ii)
$$g(0) =$$

iii)
$$g(1) =$$

$$iv) g(4) =$$

$$y) \qquad g(x+3) =$$

b. Solve algebraically for exact x

$$i) g(x) = 5$$

ii)
$$g(x+2) = 4$$

iii)
$$g(x) + 2 = 4$$

$$x =$$

x = x = x = x = 2. Simply the difference quotient for the following functions [different quotient $\frac{f(x+h)-f(x)}{h}$] a) $f(x) = x^2 + 2x + 3$ $\frac{f(x+h) - f(x)}{h} =$

a)
$$f(x) = x^2 + 2x + 3$$

$$\frac{f(x+h)-f(x)}{h}=$$

b)
$$f(x) = x^3 - 5$$

b)
$$f(x) = x^3 - 5$$
 $\frac{f(x+h) - f(x)}{h} =$

c)
$$f(x) = \frac{4}{x}$$

c)
$$f(x) = \frac{4}{x}$$
 $\frac{f(x+h) - f(x)}{h} =$

3. Simplify the following completely with a common denominator. Your final answer will not contain any negative exponents.

a)
$$\frac{4x}{x-1} - \frac{5x+2}{2x} =$$

b)
$$\frac{(b+2)^x}{(b+2)^{4x-2}} =$$

c)
$$\frac{1+2t}{\sqrt{t+3}} + 2\sqrt{t+3} =$$

d)
$$\frac{(x^2+1)\frac{1}{2\sqrt{x}}-\sqrt{x}(2x)}{(x^2+1)^2}=$$

e)
$$\frac{2}{x+5} - \frac{3}{x-5} =$$

f)
$$\frac{4(z+2)^{\frac{1}{2}}-2z(z+2)^{-\frac{1}{2}}}{z+2} =$$

g)
$$\frac{a^n 3^{n+1}}{3^n a^{n+1}} =$$

h)
$$e^{x}e^{1-x} =$$

i)
$$\frac{(x^3+1)^2-6x^3(x^3+1)}{(x^3+1)^4} =$$

j)
$$\frac{5}{\sqrt{1-z^2}} - 3\sqrt{1-z^2} =$$