Battery Equivalent Circuit

We typically treat a battery as a source of constant voltage, constant potential difference, but battery terminals, in fact, have different potential differences depending on the circuit they are part

of.

The diagram below shows a simple way to think about how a power supply / battery acts.

(a) Write an equation for the terminal potential difference $V_A - V_B$ when there is **no current** flowing. When T = O, with tage across r = Tr = O $\leq_O V_A - V_B = + \mathcal{E}$ (b) Write an equation for the terminal potential difference $V_A - V_B$ when the current flows to the

left in the diagram above.

(c) Write an equation for the terminal potential difference V_B - V_A when the current flows to the

left in the diagram above.

$$V_{B}-V_{A}=-\left(V_{A}-V_{B}\right)=-\left(\mathcal{E}-\mathcal{I}r\right)$$

(d) Write an equation for the terminal potential difference V_A - V_B when the current flows to the right in the diagram above.

right in the diagram above.
$$V_B + I_C + E = V_A$$

$$V_A - V_3 = E + I_C$$

(e) Now consider a circuit which consists of a variable resistor R connected across this battery. Let's define the terminal potential difference $V = V_A - V_B$.

(i) How is the terminal potential difference related to the voltage across R? $V = V_A - V_B = \pm R = vvl_{AB} = cvv_{BB}$

(ii) Write an equation for the current through R as a function of \mathcal{E} , Γ , and V: $\Gamma = \mathcal{E}_{tot} = \mathcal{E}_{tot} + \mathcal{$

