

2. Write
$$e^x = 5.2$$
 in logarithmic form. $\log 5.2 \times 10.512 \times$

3. Find the domain and range of
$$log(x-3)$$
. $\chi-3$ 20 $\chi > 3$

5. Express in expanded form:
$$log_c(\frac{x^0 \sqrt{g}}{2})$$
. $6log_c X + \frac{1}{2}log_c Y - log_c X = 5log_c X + \frac{1}{2}log_c Y$
6. Express in condensed form: $6lnW + \frac{1}{3}lnT - 6lnS$. $ln \frac{log_c Y}{56}$

6. Express in condensed form:
$$6lnW + \frac{1}{3}lnT - 6lnS$$
. ///
Solve for x:

8.
$$x^{log_310} = 10$$
 $\log_X 10 = \log_2 10$ $X = 2$

9.
$$e^{5x} - 3 = 0$$
 $e^{5x} \cdot 3$ 9 $\ln 3 = 5x$ $x = .2197$

Solve for t:
11.
$$6(3)^{.09e} = 15$$
 $l_n 3 = l_n \frac{5}{6}$ $t = \frac{l_n \frac{5}{6}}{.09 l_n 3} = 9.27$

12.
$$A = Pe^{rt}$$
 $t = \frac{\ln(4/e)}{r}$

13. If \$3000 is invested at a rate of 9% and is compounded continuously, how long will it take for the strength to triple? $eq \int_{-0.9}^{1} \left(\frac{3}{3} \right) = 12.21$

14. At a nearby high school, someone overhears the principal say that school will be closed a day early this week. The number of people, N, who hear this rumor in t minutes is given by $N = N_f - N_f e^{-.18t}$, where N_f is the fixed population of the school. If the school has 1800 students and staff members, how many minutes will it take for 3/4 of the school to hear the rumor? $\frac{1}{4} = \frac{1}{4} = \frac{1$

en (2/2-1)

16. The energy E (in ergs) released during an earthquake of magnitude R (from the Richter scale) may be approximated by the formula logE = 11.4 + (1.5)R. Find the energy released during the biggest earthquake in history which took place in 1933 in Japan and had a magnitude of 8.9.