Name:	Date:
	_ 0 0 ,

Wave Calculations

Speed of a wave = wavelength x frequency $\mathbf{v} = \lambda \mathbf{f}$

v = velocity (speed), measured in meters/second (m/s)
 λ=wavelength, measured in meters (m)
 f = frequency, measured in Hertz (Hz= 1/s)

- The speed of sound in air is about 340 m/s. What is the wavelength of sound waves produced by a guitar string vibrating at 490 Hz?
 a. 1.4 m b. 0.7 m c. 166,600 m
- 2. A wave along a guitar string has a frequency of 540 Hz and a wavelength of 2.5 meters. Calculate the speed of the wave:

 a. 216 m/s b. 1350 m/s c. 0.0046 m/s
- 3. The string on a piano that produces an A sharp vibrates with a frequency of 235 Hz. If the sound waves produced by this string have a wavelength (in air) of 1.49 meters, what is the speed of sound in air? a. 158 m/s b. 350 m/s c. 0.006 m/s
- A sound wave has a frequency of 3250 Hz and a wavelength of 0.1 m. What is its speed?
 a. 325 m/s b. 32,500 m/s c. 0.00003 m/s
- A sound wave has a frequency of 2700 Hz and a wavelength of 20 m. What is its speed?
 a. 13,500 m/s b. 0.00007 m/s c. 540 m/s