$C=q/m\Delta T$, where q= heat energy, m= mass, and T= temperature Remember, $\Delta T=(T_{\text{final}}-T_{\text{initial}})$. **Show all work and proper units.** Answers are provided at the end of the worksheet without units.

- 1. A 15.75-g piece of iron absorbs 1086.75 joules of heat energy, and its temperature changes from 25 $^{\circ}$ C to 175 $^{\circ}$ C. Calculate the specific heat capacity of iron.
- 2. How many joules of heat are needed to raise the temperature of 10.0 g of aluminum from 22 °C to 55 °C, if the specific heat of aluminum is 0.90 J/g °C?
- 3. To what temperature will a 50.0 g piece of glass raise if it absorbs 5275 joules of heat and its specific heat capacity is 0.50 J/g°C? The initial temperature of the glass is 20.0 °C.
- 4. Calculate the heat capacity of a piece of wood if 1500.0 g of the wood absorbs 6.75×10^4 joules of heat, and its temperature changes from 32% to 57%.
- 5. 100.0 mL of 4.0° C water is heated until its temperature is 37° C. If the specific heat of water is 4.18 J/g° C, calculate the amount of heat energy needed to cause