Worksheet 1 - Calculations

Significant Figures - the number of significant figures (sig. fig.) is a measure of the degree of **uncertainty** in a measurement. There is experimental uncertainty in the last significant figure of a measurement. The rules for sig. fig. are given in Chapter 1.5. All non-zero numbers are significant. Zeros between numbers are significant. Zeros to the left of numbers are not significant. Zeros to the right of numbers may be significant (in presence of a decimal point).

1. Express each of the following numbers in **scientific notation** and decide the number of significant figures:

	Scientific notation	sig.fig.
409.10		
4091.00		
0.004091		
308,000		
30,860.		
0.00056030		

Calculations with significant figures - In multiplication or division, the number of sig. fig. in the answer has only as many sig. fig. as the factor with the smallest number of sig. fig.

$$\frac{(0.46307)(0.0805)}{(63.54)(0.052)(2.809)} = 0.004016430$$

$$2 \text{ sig. fig. - limiting factor}$$

which rounds to .0040 or 4.0×10^{-3} (2 sig. fig.)

In **addition** and **subtraction**, the answer should be reported to the same number of decimal places as the term with the least number of decimal places.

$$37.598 - 36.76 = 0.838$$
2 decimal places - limiting factor

which rounds to 0.84 or 8.4 x 10⁻¹

Do addition and subtraction first. When rounding, numbers ≥ 5 are rounded up. Do not round until the **end** of the calculations.