Density Practice: Worksheet #1 Calculate density, and identify substances using a density chart.

Density is a measure of the amount of mass in a certain volume. This physical property is often used to identify and classify substances. It is usually expressed in grams per cubic centimeters, or g/cm³. The chart on the right lists the densities of some common materials.

Equation:	Density =	= mass	or	$\mathbf{D} = \mathbf{\underline{m}}$
		Volume		\mathbf{V}

Substance	Density		
	(g/cm ³)		
Gold	19.3		
Mercury	13.5		
Lead	11.4		
Iron	7.87		
Aluminum	3.7		
Bone	1.7-2.0		
Gasoline	0.66-0.69		
Air (dry)	0.00119		

Problem Statement	Formula	Define Variables	Substitution	Answer
Sample: What is the density of a	D = <u>m</u>	M = 250 g	D = 250 g	2.5 g/cm ³
billiard ball that has a volume of	\overline{v}	$V = 100 \text{ cm}^3$	100 cm ³	
100 cm ³ and a mass of 250 g?				
 A loaf of bread has a volume 				
of 2270 cm^3 and a mass of 454 g .				
What is the density of the bread?				
2. A block of wood has a density				
of 0.6 g/cm ³ and a volume of				
1.2 cm ³ . What is the mass of the				
block of wood?				
3. A 800g boulder has a density				
of 8 g/cm ³ . What is the volume				
of the boulder?				
4. What is the mass of the block				
of iron illustrated below?				
2 cm				
5 cm				
TO CITI				

Use the data below to calculate the density of each unknown substance. Then use the density chart above to determine the identity of each substance.

Mass (g)	Volume	D = m/v	Density	Substance
	(cm ³)	Variable Substitutions	(g/cm ³)	
4725	350	D = 4725	D = 13.5	Mercury
		350		
171	15			
148	40			
1.0				
475	250			
500	1000			
680	1000			