| SBI 3UE | DICHOTOMOUS KEY PROJECT | NAME: | |---------|-------------------------|-------| | | | | ## PROCEDURE - Create a dichotomous key (refer to insect, whale, fish and shark for examples) - Use a minimum of **8 specimens** (a maximum of 10) must be closely related (i.e. butterflies, seahorses, snakes, bacteria, tulips the options are limitless!) - Leading to genus and species names (you may include the common name in brackets underneath) - Lifelike specimens which are $\underline{\text{sturdy}}$ and will store well ## MUST BE - Based on real biological, taxonomic differences (you can NOT create a species that doesn't exist) - Specimens must be **numbered**, with an **answer key located on the back or flip down underneath Poster size** with key(s) and biological terms explained in your **own words diagrams are helpful**Include a **legend** (one or more) to help define terminology and location of features on specimen | | Remedial | Level 1 | Level 2 | Level 3 | Level 4 | |---|--|---|--|---|--| | Research | Incomplete or incorrect bibliography | | | Bibliography is complete
Highlighting of important
information is missing | Complete and correct
bibliography
Sources cited – a variety used
Highlighted important details | | Key(s) | Key doesn't work
Common (rather than
biological names) used in key
Explanations not in own
words | Single
omission in
terms | Slight errors in
terms
(terminology) | Key works/able to follow
Biological terms are
explained in own words
Proper scientific names | Biological terms well-
differentiated
Pertinent diagram(s) – useful to
reader and helps to clarify
Information explained in own
words | | Biological
Accuracy | Insufficient attention to biological details to satisfy the key | Work appears
rushed
Little
accuracy on
biological
models | Some attention
to biological
details
Hard to
distinguish some
characteristics | Sufficient attention to
biological details to satisfy
the key Details are recognizable | High attention to biological
features and details
Specimens appear life-like and
highlight important features | | Visual
Display
(Poster
Dichotomous
Key) | Ambiguous, messy
Incorrect spelling
Haphazard (shows no
attention to detail) | | | Biologically accurate and
complete
Good organization,
colourful and creative | Pleasing and artistic
Sturdy – can be stored well
Poster is exceptionally
organized and information is
easily located | ## ** No individual may do more than half the project. In the space below, make a clear distinction of who did what by highlighting individual roles in the rubric and giving a brief description (only for those working in pairs). Due Date: Monday September 26th, 2011