Energy Conversion Worksheet

A capacitor's stored energy can be determined by it's capacitance C in Farads and its voltage V by the equation:

 $E = 1/2 C V^2$

We can use this to quantify the end-to-end power of our kinetic energy converters.

- 1. Measure the open circuit voltage and short circuit current of your converter.
- 2. Use your converter, plus any rectification, to charge a capacitor form one voltage to another. Measure the time it takes to affect this change.
- 3. Calculate the energy stored in the capacitor before (if any, e.g. V!=0) and after charging.
- 4. The difference in energy, divided by time, is the real-world power of our converter. How does this compare with the outside power limit given by SCC*OCV?

Energy Converter (eg "small stepper"):	
Measured Open Circuit Voltage (V) - use the oscilloscope	
Measured Short Circuit Current (mA) - use a meter	
Test Capacitor Capacitance (Farads)	
Target Capacitor Voltage (Volts) - starting, ending	
Target Capacitor Change in Energy (Joules) E = 1/2 C * V ²	
Time to Charge (seconds)	
Observed Power (Watts) - Energy / Time	

Sustainable Energy NYU/ITP/Feddersen