Thermodynamics Worksheet #4

- What is the specific heat of a substance that has a mass of 25.0 g and requires 525.0 kJ to raise its temperature by 1.
- Suppose 100.0 g of $H_2O_{(s)}$ absorbs 1255.0 J of heat. What is the corresponding temperature change? The specific heat of $H_2O_{(s)}$ is 2.1 J/g. C. 2.
- How many joules of heat energy are required to raise the temperature of 100.0 g of aluminum by 120.0 $^{\circ}$ C? The specific heat of aluminum is 0.900 J/g. $^{\circ}$ C. 3.
- Calculate the amount of heat evolved when 15.0 g of Ca(OH) $_2$ forms from the reaction of CaO $_{(s)}$ + H $_2$ O $_{(1)}$ \rightarrow Ca(OH) $_{2(s)}$ $\Delta H = -65.2 \text{ kJ}$ 4.
- Calculate the amount of heat produced when 52.4 g of methane, CH₄, burns in an excess of air, according to the 5. following equation. $CH_{4(g)} + 2 O_{2(g)} \rightarrow CO_{2(g)} + 2 H_2O_{(l)}$

$$CH_{4(g)} + 2 O_{2(g)} \rightarrow CO_{2(g)} + 2 H_2O_{(1)}$$
 $\Delta H = -890.2 \text{ kJ}$

What is the enthalpy change for the formation of hydrazine, $N_2H_{4(l)},$ from its elements? $\begin{array}{c} N_{2(g)} + 2\;H_{2(g)} \Rightarrow N_2H_{4(l)} \\ \text{Use the following reactions and enthalpy changes:} \\ N_2H_{4(l)} + O_{2(g)} \Rightarrow N_{2(g)} + 2\;H_2O_{(l)} \\ H_{2(g)} + \frac{1}{2}\;O_{2(g)} \Rightarrow H_2O_{(l)} \\ \end{array}$ 6.

$$N_2H_{4(l)} + O_{2(g)} \rightarrow N_{2(g)} + 2 H_2O_{(l)}$$
 $\Delta H = -622.2 \text{ kJ}$
 $H_{2(g)} + \frac{1}{2} O_{2(g)} \rightarrow H_2O_{(l)}$ $\Delta H = -285.8 \text{ kJ}$

7.

$$\begin{array}{ll} \mbox{Barium oxide reacts with sulfuric acid as follows:} \\ \mbox{BaO}_{(s)} + \mbox{H}_2 SO_{4(aq)} \rightarrow \mbox{BaSO}_{4(s)} + \mbox{H}_2 O_{(l)} \\ \mbox{Calculate the change in enthalpy of the reaction from these data:} \\ \mbox{SO}_{3(g)} + \mbox{H}_2 O_{(l)} \rightarrow \mbox{H}_2 SO_{4(l)} \\ \mbox{BaO}_{(s)} + \mbox{SO}_{3(g)} \rightarrow \mbox{BaSO}_{4(s)} \\ \end{array}$$

8.

The following equation shows the combustion of ethane. $2\ C_2H_{6(g)}\ +\ 7\ O_{2(g)}\ \to\ 4\ CO_{2(g)}\ +\ 6\ H_2O_{(g)}$ Use Hess's Law to calculate the enthalpy change for combustion of ethane, C_2H_6 , from the following data.

$$\begin{array}{lll} C_2H_{4(g)} \ + \ 3 \ O_{2(g)} \ \rightarrow \ 2 \ CO_{2(g)} \ + \ 2 \ H_2O_{(g)} & \Delta H = -1323 \ kJ/mol \ C_2H_4 \\ C_2H_{4(g)} \ + \ H_{2(g)} \ \rightarrow \ C_2H_{6(g)} & \Delta H = -137 \ kJ/mol \\ H_{2(g)} \ + \ 1/2 \ O_{2(g)} \ \rightarrow \ H_2O_{(g)} & \Delta H_g^{\,\, o} = -242 \ kJ/mol \end{array}$$

- 9. Using the table below, calculate ΔG_{rxn} for each of the following reactions. Decide whether the reaction would occur spontaneously or not. Hint: Calculate ΔH_{rxn} and ΔS_{rxn} first. Assume a temperature of 25°C.

 - $\begin{array}{l} a. \ PbBr_{2(s)} + Cl_{2(g)} \ \, \boldsymbol{\rightarrow} \, PbCl_{2(s)} + Br_{2(l)} \\ b. \ \, H_2O_{(l)} \ \, \boldsymbol{\rightarrow} \, H_2O_{(g)} \\ c. \ \, 2 \ C_2H_{6(g)} + 7 \ \, O_{2(g)} \ \, \boldsymbol{\rightarrow} \, 4 \ \, CO_{2(g)} + 6 \ \, H_2O_{(l)} \\ d. \ \, Cu_2S_{(s)} + S_{(s)} \ \, \boldsymbol{\rightarrow} \, 2 \ \, CuS_{(s)} \\ e. \ \, CuS_{(s)} + 2 \ \, O_{2(g)} \ \, \boldsymbol{\rightarrow} \, CuSO_{4(s)} \end{array}$

Substance	ΔH _f ° (kJ/mol)	S° (J/mol.K)
$Br_{2(1)}$	0	152.231
$C_2H_{6(g)}$	-84.68	229.60
$CO_{2(g)}$	-393.509	213.74
$Cl_{2(g)}$	0	223.066
$Cu_2S_{(s)}$	-79.5	120.9
CuS _(s)	-53.1	66.5
CuSO _{4(s)}	-771.36	109
$H_2O_{(1)}$	-285.830	69.91
$H_2O_{(g)}$	-241.818	188.825
$O_{2(g)}$	0	205.138
PbBr _{2(s)}	-278.7	161.5
PbCl _{2(s)}	-359.41	136.0
S _(s)	0	31.80