(c) Rate of production of CO₂ $$CH_{4(g)}$$ + 2 $O_{2(g)}$ \rightarrow $CO_{2(g)}$ + 2 $H_2O_{(g)}$ The rate of production of CO₂ is the same as compared to the rate of consumption of CH₄ is (d) Rate of production of H₂O $$CH_{4(g)}$$ + 2 $O_{2(g)}$ \rightarrow $CO_{2(g)}$ + 2 $H_2O_{(g)}$ The rate of production of H₂O is 2 times as fast as compared to the rate of consumption of CH₄ is 9. (a) 4 $$HI_{(g)}$$ + $O_{2\,(g)}$ \rightarrow 2 $I_{2(g)}$ + 2 $H_2O_{(g)}$ The rate of formation of I₂ is 2 times as fast as compared to the rate of consumption of O₂. $$= 2 \times 0.0042 \text{ mol } / \text{L·s} = 0.0084 \text{ mol } / \text{L·s}$$ (b) 4 $$HI_{(g)}$$ + $O_{2\,(g)}$ \rightarrow 2 $I_{2(g)}$ + 2 $H_2O_{(g)}$ The rate of formation of H₂O is 2 times as fast as compared to the rate of consumption of O₂. (c) 4 HI_(g) + O_{2 (g)} $$\rightarrow$$ 2 I_{2(g)} + 2 H₂O_(g) The rate of consumption of HI is 4 times as fast as compared to the rate of consumption of O₂. 10. (a) 4 NO_{2(g)} + O_{2 (g)} $$\rightarrow$$ 2 N₂O₅ \uparrow The rate of formation of N_2O_5 is 2 times as fast as compared to the rate of consumption of O_2 .