| Chemistry | Name
Period | |-----------|----------------| | | Period | ## Gas Law Stoichiometry Worksheet Directions: Use significant figures and units in the problems below. | 1. | Given the following <u>unbalanced</u> chemical equation for the combination reaction of sodium metal and chlorine gas: | | | |----|---|--|--| | | Na _(s) +CI _{2(g)} | NaCl _(s) | | | | a. What volume of chlorine gas, measured at STP, i
reaction of 4.81 g of sodium metal. | s necessary for the complete | | | | reaction of 4.61 g of sodium metal. | | | | | | | | | 2. | $C_3H_{8(g)}$ + $O_{2(g)}$ CO_2 | (g) +H ₂ O _(g) | | | | a. Balance the above reaction.b. What volume of oxygen gas at 25°C and 1.04 atm | n is needed for the complete | | | | combustion of 5.53 g of propane? | | | | | | | | | 3. | . Potassium permanganate, KMnO₄, is produced commercially by oxidizing aqueous potassium manganate, K₂MnO₄ | | | | | K ₂ MnO _{4 (g)} +Cl _{2(g)} KMn | nO _{4 (g)} +KCl _{(g} | | | | a. Balance the above reaction. b. What volume of Cl₂(g), measured at STP, is need | led to produce 10.0 g of | | | | KMnO₄? | | | | | | | | | 4. | If water is added to magnesium nitride, ammonia gas is produced when the is heated. | | | | | $\underline{\hspace{1cm}}_{Mg_3N_{2(g)}} \hspace{1cm} + \hspace{1cm} \underline{\hspace{1cm}}_{H_2O_{(g)}} \hspace{1cm} \underline{\hspace{1cm}}_{MgC}$ | P _(g) +NH _{3(g)} | | | | a. Balance the above reaction. b. If 10.3 g of magnesium nitride is treated with 10.3 ammonia gas would be collected at 24°C and 752 | | | | | ammonia gas would be collected at 24 C and 752 | | |