

- Case 1: Ionic compounds containing monatomic ions (i.e. ions that can only have one charge)
 - Name of Compound = name of metal + name of non-metal w/ide suffix or name of polyatomic ion. No prefixes are used! e.g. NaF = sodium fluoride; $Na_3PO_4 = sodium phosphate$; $(NH_4)_3PO_4 = ammonium phosphate$

Case 2: Ionic compounds containing a metal that can form more than one ion

- Name of Compound = name of metal, followed by charge of metal in Roman numerals in parentheses, followed by name of non-metal w/ -ide suffix or name of polyatomic ion. No prefixes are used! e.g. $PbCl_2 = Lead$ (II) chloride; $Cu(NO_3)_2 = copper$ (II) nitrate

Case 3: Binary molecular compounds:

- Name of Compound = name of first element + name of second element with -ide suffix.
- Use prefixes (mono-, di-, tri-, tetra-, penta-, hexa-, hepta-, nona-, deca-) to indicate the number of atoms. The mono prefix is not used with the first element. e.g. CO = carbon monoxide; $NO_2 = \text{nitrogen dioxide}$; $N_2O = \text{dinitrogen monoxide}$; $P_2O_5 = \text{carbon mo$
- diphosphorus pentoxide
- Case 4: Binary acid solutions (i.e. binary acids dissolved in water = binary acids in aqueous solution)

 Name of Compound = hydro + name of halogen w/-ic suffix e.g. HF_(aq) = hydrofluoric acid; HCl_(aq) = hydrochloric acid
 - Unless stated otherwise assume the formula of a binary acid is for the acid dissolved in water. E.g. assume $HCl = HCl_{(aq)}$

Naming Oxoacids (i.e. compound with the general formula H_xMO_y , where M = nonmetal)

The name of an oxoacid is based on the name of the polyatomic ion from which the acid is derived.

Case 5: -ate \leftarrow -ic

If the name of the polyatomic ion ends in "-ate," the name of the corresponding acid ends in "-ic acid."

Polyatomic ion (-ate) \rightarrow Acid (-ic)

sulfate = $SO_4^{2^{-}} \rightarrow$ H_2SO_4 = sulfuric acid

Chlorate = $ClO_3^{1^{-}} \rightarrow$ HClO₃ = chloric acid

Case 6: -ite ←→ -ous

If the name of the polyatomic ion ends in "-ite," the name of the corresponding acid ends in "-ous acid."

Polyatomic ion (-ite) Acid (-ous)

H₂SO₃ = sulfur<u>ous</u> acid HClO₂ = chlor<u>ous</u> acid $sulfite = SO_3^{2-}$ $Chlorite = ClO_2^{1-}$

Chemical Nomenclature - Page 1 of 4