Differentiation worksheet #1 for Calculus 1

Use the limit definition of derivative to differentiate the following functions:

$$(1) x + 1$$

$$(2) \ 2/x$$

$$(1) x + 1$$

 $(2) 2/x$
 $(3) x^2 + x$

(4)
$$\sqrt{x-4}$$

(4)
$$\sqrt{x-4}$$

(5) $\frac{x}{x+1}$ (without simplifying first!)

Here is a list of differentiation rules:

A. Power Rule

B. Chain Rule

C. Product Rule D. Quotient Rule

For each given function, mark which differentiation rule you would apply first.

(6)
$$x^{3.2}$$

(7) $x^2 - x$

(8)
$$\frac{\pi x}{6}$$

(6)
$$x^{3.2}$$

(7) $x^2 - x^4$
(8) $\frac{\pi x}{6}$
(9) $x^2 \sqrt{x^4 + 1}$
(10) $\cos(x^4)$

$$(11) \ \frac{x}{1-x}$$

(11)
$$\frac{x}{1-x}$$

(12) $(x+x^{1/2})(\cos(x)+x^{1/3})$
(13) $\cos^4(x)$
(14) $\cos(x^4)-2\sin(x)$
(15) x^{π}

$$(13) \cos^4(x)$$

(14)
$$\cos(x^4) - 2\sin(x)$$

$$(15) x^{\pi}$$

You are given the following information: f and g are continuous differentiable functions such that f(5) = 3, g(5) = 4, f'(5) = 7, g'(5) = -2. Find h(5) and h'(5) for each of the following functions h:

(16)
$$h = f + g$$

$$(17) h = f - g$$

(18)
$$h = 2f/g$$

(16)
$$h = f + g$$

(17) $h = f - g$
(18) $h = 2f/g$
(19) $h = g^2 - 3g$

(20)
$$h = \sqrt{f + f * g}$$

(21) $h = \frac{f^2 + g}{f + g}$

(21)
$$h = \frac{f^2 + g}{f + g}$$

Find the derivative. Show every time you use one of the rules A-D above.

Example. To find the derivative of $x^3 + \sin(x)$:

find the derivative of
$$x^3 + \sin(x)$$
:

$$\frac{d}{dx}(x^3 + \sin(x)) = \frac{d}{dx}(x^3) + \frac{d}{dx}(\sin(x))$$

$$= 3x^2 + \cos(x)$$

A. power rule

$$\begin{array}{l} (22) \ x^{3.2} \\ (23) \ x^5 + 2x^{4.3} + \frac{1}{4}x^{1/3} \\ (24) \ -x^{2+1} \\ (25) \ -5 \\ (26) \ 5/x^2 \\ (27) \ 25 - \frac{x}{3} \\ (28) \ \sqrt[3]{x} + \sqrt[4]{x} \\ (29) \ 1/x^{-0.4} \end{array}$$

$$(24) -x^{2+}$$

4)
$$-x^{2+1}$$

$$(31) x^{\pi} - \pi x$$

$$(25) -5$$

$$(32)$$
 $x^{-7} - 7x^{-1}$

$$(26) \ 5/x^2$$

(33)
$$\frac{3}{7}x^{-4/7} + 3x^{-1}$$

$$(27) \ 25 - \frac{x}{3}$$

(34)
$$x^{\sqrt{5}} + \sqrt{5x}$$

$$(28)$$
 $\sqrt[3]{x} + \sqrt[3]{x}$

$$(30) \frac{\pi x}{6}$$

$$(31) x^{\pi} - \pi x$$

$$(32) x^{-7} - 7x^{-1}$$

$$(33) \frac{3}{4}x^{-4/7} + 3x^{-\pi}$$

$$(34) x^{\sqrt{5}} + \sqrt{5x}$$

$$(35) ax^{2} + bx + c, \text{ where } a, b, c \text{ are constants}$$

$$(36) 5 \cos(x) - 2 \cos(x)$$

(28)
$$\sqrt[3]{x} + \sqrt[4]{x}$$

(36)
$$5\cos(x) - 2\cos(x)$$