- 1. Draw the interval (-2, 3] on the number line. **Answer:** See the last page.
- 2. Arrange from least to greatest: $-2, |\pi|, |-2|, -|-1|, 1$. Use the symbols " < " and " \leq ".

Answer:

$$-2<-|-1|<1<|-2|<|\pi|$$

3. Simplify to an integer: $|3(|4-7|\cdot|-1-2|)+1|$. Answer:

$$\begin{array}{rcl} |3\left(|4-7|\cdot|-1-2|\right)+1| & = & |3\left(|-3|\cdot|-3|\right)+1| \\ & = & |3\left(3\cdot3\right)+1| \\ & = & |3\left(9\right)+1| \\ & = & |27+1| \\ & = & |28| \\ & - & 28 \end{array}$$

- 4. Rewrite |3-x|-|x+1| without using the absolute value sign where:
 - (a) $x \ge 3$.

Answer: If $x \ge 3$, then 3-x is negative and must be negated when the absolute value is removed and x+1 is positive so remains unchanged. So for $x \ge 3$

$$|3-x|-|x+1| = -(3-x)-(x+1) = -3+x-x-1 = -4$$

(b) x = 2.

Answer: Substitute and simplify:

$$|3-2|-|2+1| = |1|-|3| = 1-3 = -2$$

(c) x < -2.

Answer: If x < -2, then 3-x is positive and x-1 negative. We must negate the second quantity if the absolute value sign is removed. So for x < -2

$$|3-x| - |x+1| = 3 - x + (x+1) = 4$$

5. Write using the absolute value sign the expression representing the distance on the number line between 2 and -5.

Answer: |2 - (-5)|