The criss-cross method of balancing charge! Ionic compound formulas must contain the fewest number of ions that "balance" out positive and negative charge (the same amount of each). The "criss-cross" method is one way of writing the formulas properly. The formula for ionic compounds is called a "formula unit." 1. Write symbols and charges of ions. 2. Crisscross The cation charge becomes the anion subscript The anion charge becomes the cation subscript - 3. Clean up format for final answer - do NOT write ionic charges - reduce subscripts to lowest ratio - do NOT write the subscript "1" $Cu_{3}P_{2} \\$ Use the criss-cross method to write formula units for these ionic compounds (2 examples are done for you) $\frac{1}{2}$ | | C1 ⁻ | \mathbf{O}^{2-} | P ³⁻ | S^{2-} | |------------------|-------------------|--------------------------------|--------------------------------|--------------------------------| | Na ⁺ | NaCl | Na ₂ O | Na ₃ P | Na ₂ S | | K + | KCl | K ₂ O | K ₃ P | K ₂ S | | Ba ²⁺ | BaCl ₂ | BaO | Ba ₃ P ₂ | BaS | | Fe ²⁺ | FeCl ₂ | FeO | Fe ₃ P ₂ | FeS | | Cr ³⁺ | CrCl ₃ | Cr ₂ O ₃ | CrP | Cr ₂ S ₃ | | Li ⁺ | LiCl | Li ₂ O | Li ₃ P | Li ₂ S | | Mg ²⁺ | MgCl ₂ | MgO | Mg ₃ P ₂ | MgS | | Al ³⁺ | AlCl ₃ | Al_2O_3 | AlP | Al_2S_3 | | Ga ³⁺ | GaCl ₃ | Ga ₂ O ₃ | GaP | Ga ₂ S ₃ | | Sn ²⁺ | SnCl ₂ | SnO | Sn ₃ P ₂ | SnS | | Ca ²⁺ | CaCl ₂ | CaO | Ca ₃ P ₂ | CaS |