Gas Laws Worksheet (Chapter 5)

Charles' Law: $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ V = Volume in liters (L)

 $T_1 - T_2$ V = Volume in liters (L) (Direct Relationship)

Combined Gas Law: $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$ T = Temperature in Kelvin (K)

Ideal Gas Law: PV=nRT n = Number of moles

Using the proper equations solve (complete) each question. Assume all are "ideal" gasses.

- 1. What is the pressure of a gas if you compressed the gas from its original 500 mL at 3.4 torr to a volume of 302 mL?
- 2. At what temperature will a gas be at if you allow it to expand from an original 456 mL at 65 $^{\circ}$ C to 3.4 L?
- 3. If you have 0.56 moles of an ideal gas at 87 °C and a pressure of 569 torr, what volume will the gas take up?
- 4. You have a gas at 453 mm Hg with a volume of 700 mL and a temperature of 25 $^{\circ}$ C, what will the temperature of the gas be, if you change the pressure to 278 mm Hg and a volume of 1200 mL?
- 5. Analysis of a gaseous chlorofluorocarbon, CCl_xF_y, shows it contains 11.79 % C and 69.57 % Cl. In another experiment you find that 0.107 g if the compound fills a 458 mL flask at 25 °C with a pressure of 21.3 mmHg. What is the molecular formula of the compound?