NEUTRALIZATION AND HYDROLYSIS WORKSHEET

Salt solutions may be acidic, basic or neutral depending on the original acid and base that formed					
the salt.					
strong acid $+$ strong base $ o$ neutral salt					
strong acid $+$ weak base \to acidic salt					
weak acid $+$ strong base \rightarrow basic salt					
_					

A weak acid and a weak base will produce any type of solution depending upon the relative strengths of the acid and base involved.

Complete the table below for each of the following salts.					
SALT	PARENT ACID	PARENT BASE	TYPE OF SOLUTION acidic, basic, neutral		
1. KCl					
2. NH ₄ NO ₃					
3. Na ₃ PO ₄					
4. CaSO ₄					
5. AlBr ₃					
6. CuI ₂					
7. MgF ₂					
8. NaNO ₃					
9. LiC ₂ H ₃ O ₂					
10. ZnCl ₂					
11. SrSO ₄					
12. Ba ₃ (PO ₄) ₂					

 Acid + Base →	r the following	
b. $H_2SO_4 + KOH \rightarrow$		
c. $HNO_2 + LiOH \rightarrow$		

- 3. In the above reactions, label the strong and weak acids and bases.4. In the above reactions, label the salts as acidic, basic or neutral.