NEUTRALIZATION AND HYDROLYSIS WORKSHEET | Salt solutions may be acidic, basic or neutral depending on the original acid and base that formed | | | | | | |--|--|--|--|--|--| | the salt. | | | | | | | strong acid $+$ strong base $ o$ neutral salt | | | | | | | strong acid $+$ weak base \to acidic salt | | | | | | | weak acid $+$ strong base \rightarrow basic salt | | | | | | | _ | | | | | | A weak acid and a weak base will produce any type of solution depending upon the relative strengths of the acid and base involved. | Complete the table below for each of the following salts. | | | | | | |---|-------------|-------------|---|--|--| | SALT | PARENT ACID | PARENT BASE | TYPE OF SOLUTION acidic, basic, neutral | | | | 1. KCl | | | | | | | 2. NH ₄ NO ₃ | | | | | | | 3. Na ₃ PO ₄ | | | | | | | 4. CaSO ₄ | | | | | | | 5. AlBr ₃ | | | | | | | 6. CuI ₂ | | | | | | | 7. MgF ₂ | | | | | | | 8. NaNO ₃ | | | | | | | 9. LiC ₂ H ₃ O ₂ | | | | | | | 10. ZnCl ₂ | | | | | | | 11. SrSO ₄ | | | | | | | 12. Ba ₃ (PO ₄) ₂ | | | | | | | | | | | | | | Acid + Base → | r the following | | |----------------------------------|-----------------|--| | b. $H_2SO_4 + KOH \rightarrow$ | | | | c. $HNO_2 + LiOH \rightarrow$ | | | - 3. In the above reactions, label the strong and weak acids and bases.4. In the above reactions, label the salts as acidic, basic or neutral.