Acid and base worksheet 4

Name _____

A represents NO2

$$[H+] = 10^{-pH}$$

 $[OH^-] = 10^{-pOH}$

$$pH + pOH = 14$$

Acids have a dissociation

$$HA = H^+ + A^-$$

Weak Acids do not completely dissociate. If a solution of a weak acid is 0.10 M HA this does not mean that the [H $^+$] will be 0.10 M. You must consider the K_a and determine how much H $^+$ dissociated.

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

To determine the pH we need to know the [H⁺].

If the $K_a = 7.1 \times 10^{-4}$ of a 0.10M HNO₂, what is the pH of the acid?

	HA =		+	\mathbf{A}^{-}
Initial concentration	0.10	O		O
Change	-x	+x		+x
Equilibrium	0.10-x	+x		+x

Setup the equilibrium expression. $7.1x10^{-4} = \frac{[x][x]}{[0.10 - x]}$

Solve for x $7.1 \times 10^{-4} (0.10 - x) - x^2 = 0$

Graph and find x = 0.0081

Looking back at the table above x is equal to the concentration of H⁺ and A⁻ at equilibrium.

Therefore the pH will equal the pH = -log[0.0081] = 2.1

Calculate the following

1. What is the pH of a 0.25 M solution of HF if the $K_a = 6.8 \times 10^{-4}$?

____ans.