Lesson 5 - Empirical and Molecular Formulas

Empirical Formula = simplest formula Molecular Formula = actual number and kind of atoms in a molecule Example:

 $C_6H_{12}O_6 =$ CH₂O Molecular Empirical Formula Formula

- 1) Give the empirical formula of the following compounds:
- a. N₂O₄ → NO₂
 b. C₆H₁₂ → CH₂
 c. P₂O₃ → P₂O₃
 d. C₆H₆ → CH
 2) What is the empirical formula for a compound that contains 21.6% sodium, 33.3% chlorine, and 45.1%
 a. Assume that you have 100g of the substance Na= 21.6α

$$Na = 21.6g$$

$$CI = 33.3c$$

$$O = 41.5g$$

Na= 21.6g
Cl = 33.3g
O = 41.5g
b. Find the # of moles of each element

Na
$$n = \frac{m}{M}$$

$$n = \frac{21.5 \,\mathrm{g}}{22.99 \,\mathrm{g} \,/\,\mathrm{mol}}$$

$$n = 0.940$$

$$CI \quad n = \frac{m}{M}$$

$$n = \frac{33.3g}{35.45 g/mol}$$

$$n = 0.939 mol$$

$$O \qquad n = \frac{m}{M}$$

$$n = \frac{45.1g}{16.00 g / mol}$$

$$n = 0.2.82 mol$$

$$n = 0.2.82 mol$$

c. Divide each mole value by the smallest mole value to get the ratio

Na =
$$\frac{0.940}{0.939}$$

$$O = \frac{2.82}{0.939}$$

$$= \frac{1}{0.939}$$

$$CI = \frac{0.939}{0.939} = \frac{1}{1}$$

.. The empirical formula is NaClO₃