Protein Synthesis Notes POST

I. DNA & RNA Structure

- A. Nucleic acids DNA & RNA
 - 1. DNA: genes; tells RNA which proteins to make
 - 2. RNA: dictates amino acid sequence of proteins, which determines function of proteins
- B. Structure: made of nucleotides that include a sugar (ribose or deoxyribose), a nitrogen base, and a phosphate
 - 1. DNA: deoxyribose; bases are adenine, guanine, cytosine, thymine; double-stranded
 - a. 2 long chains of nucleotides
 - b. held together by hydrogen bonding
 - base-paring: base on one strand pairs with complementary base on other strand (A=T, C=G); DNA
 replication
 - 2. RNA: ribose; bases are adenine, guanine, cytosine, uracil; single-stranded
 - a. messenger RNA (mRNA): temporary copy of a gene that encodes a protein
 - i. transcription: process of making mRNA
 - ii. translation: process of mRNA determining the order that amino acids are added to the protein

Practice DNA Replication

RNA

RNA

ication AACGTGCATTGACGG CATGATTACTTCGTC TGTACCAGAGGAGAT

UUGCACGUAACUGCC

GUACUAAUGAAGCAG ACAUGGUCUCCUCUA

AACGUGCAUUGACGG CAUGAUUACUUCGUC UGUACCAGAGGAGAU

- b. ribosomal RNA (rRNA): combine with proteins to make ribosomes
- c. transfer RNA (tRNA): carries and transfers amino acids to growing proteins

C. DNA \rightarrow protein

- 1. when mRNA is made, it uses the DNA strand as a template
- to make mRNA, A pairs with U, T → A, G → C, C → G
- 3. on the mRNA, every 3 bases (codon) codes for an AA
 - a. some are start and stop codons
- 4. codon pairs with anticodon on tRNA, which carries the corresponding AA

II. Importance of Proteins

- A. material for cell structures or tissues
 - 1. keratin: skin, hair, feathers, scales
 - 2. collagen: connective tissue
 - 3. myosin: makes muscles contract

B. enzymes

- 1. catalyst for chemical reactions
- 2. hemoglobin in blood binds to oxygen
- 3. hormones: chemical messengers

III. Transcription

A. RNA Synthesis

- 1. RNA polymerase: joines RNA nucleotides according to DNA base sequence
 - eukaryotes have 3 types: mRNA, tRNA, rRNA made in nucleus and moved out to cytoplasm for protein synthesis

B. Stages of transcription

- 1. initiation: RNA polymerase attaches to DNA on a promoter region
 - a. initiation factors: proteins required for polymerase to attach
- 2. elongation
 - a. RNA polymerase unwinds DNA and adds complementary base
 - b. makes primary transcript
- termination
 - a. RNA polymerase reaches terminator region on DNA
 - b. releases and stops process

C. RNA Processing

- 1. splicing removes mRNA segments that don't code for AA
 - a. introns removed
 - b. exons remain
- 2. add mG head and polyA tail to mRNA for protection