Pre-Calculus

Trigonometric Functions Review Sheet

Non-Calculator Section

1. Show that $tan^2\theta = sec^2\theta - 1$.

Convert to sin and cos, remove fractions, and look for the duck

2. Find the exact values of the 6 trigonometric function for the angle formed by a ray from the origin through (1, 0) and a ray from the origin through the point (-3 $\sqrt{5}$, 2). $\sin\theta=2/7$, $\cos\theta=-(3\sqrt{5})/7$, $\tan\theta=-(2\sqrt{5})/15$, $\csc\theta=7/2$, $\sec\theta=-(7\sqrt{5})/15$, $\cot\theta=-(3\sqrt{5})/2$

- 3. If $\sin \theta = 0.1$, find $\sin (\theta + \pi)$. -0.1
- 4. Find sec $\theta = 2$ for all θ in radians. $\pi/3 + 2n\pi, -\pi/3 + 2\pi n$
- 5. Find the exact values of:

a. $\sin (17\pi/4)$ $\sqrt{2/2}$

b. $cos(5\pi)$

c. $\tan (-3\pi/4)$

6. In which quadrant or quadrants (if any) are:

a. sin and sec positive

b. tan and sin negative

c. cos, sec, and tan

П

negative

7. Find the exact values of the following expressions: a. $\sin^2 40^\circ + \cos^2 40^\circ$ b. $\sin(-\pi) + \cos^2 40^\circ$

b. $\sin(-\pi) + \cos(5\pi)$

c. (sin 80°)(csc 80°)

- 8. Graph the following from $-2\pi < x < 2\pi$. Label the axes, and label each x- and yintercept, and each maximum and minimum with an exact coordinate pair.
 - a. cos x

b. csc x

c. cot x

d. $3 \sin(x) + 1$

