Atom (Ions/Isotopes) Worksheet					
Part I: Fill in the following chart					
Element/Ion	Atomic	Number of	Number of	Number of	Mass
	Number	Protons	Neutrons	Electrons	Number
1 ₁ H					
1 H +					
¹² ₆ C					
⁷ ₃ Li					
35 17 Cl					
³⁹ K					
²⁴ ₁₂ Mg ²⁺					
⁷⁵ ₃₃ As					
¹⁰⁸ ₄₇ Ag ⁺					
32 16 S ²⁻					
		30		28	66
	76		114		

Part II: Answer the following questions:

1. a. How can you tell if an atom has a negative charge?

- b. How can you tell if an atom has a positive charge?
- 2. Define an isotope.
- 3. What would happen if the number of protons were to change in an atom?
- 4. Another way to write isotopes is to write the name of the element then add the mass number after a dash, for example, ${}^{14}_{6}$ C is carbon-14. Why isn't the atomic number needed for this notation?
- 5. What is similar about all of the atoms in Group 1? Group 7?