| 1.1 Explanations, argument and decisions | YEAR 7 | YEAR 8 | YEAR 9 | YEAR 10 | YEAR 11 | YEAR 11 EXTENSION | |--|--|--|--|---|--|--| | 1.1a1 Scientific Thinking -
developing explanations using
ideas and models | Use an existing model/analogy to
explain a phenomenon. Recognise
and explain the value of using
models and analogies to clarify
explanations | Describe more than one model to
explain the same phenomenon and
discuss the strengths and
weaknesses of the model. Describe
how the use of a particular model or
analogy supports an explanation | Describe the strengths and weaknesses of a range of available models and select the most appropriate. Explain why the manipulation of a model or analogy might be needed to darify explanations | Justify the selection of a particular
model as the most appropriate.
Devise own simple models or
analogies to explain observations,
data or scientific ideas | Evaluate the effectiveness of using models and analogies in their explanations. Evaluate the strengths and weaknesses of their own models and analogies | Recognise that it is possible to have and to use different, and sometimes conflicting, models in their explanation. Explain how the devising and using of alternative models could help to make a 'creative leap' in an explanation | | 1.1a2 Scientific thinking challenge
and collaboration in developing
explanations | Recognise that scientists of all
disciplines and nationalities often
work together to develop
explanations. Recognise that
science cannot yet explain
everything. | Recognise that science is a
communal, and therefore fallible,
human activity and that different
expansions can arise from
individual bias. Recognise questions
that the scientific process cannot
answer. | Explain how bias, a tack of evidence
or misconceptions can give rise to
inappropriate theories and the role
of scientists in questioning these.
Identify some questions that the
scientific process cannot yet
completely answer but can
contribute to. | Describe the process of validating
the work of other scientists and
explain how this influences on the
acceptance or rejection of a theory,
identify some questions that the
scientific process cannot yet
completely answer but can
contribute to, and explain the
reasons for this. | Explain why it is important for the
scientific community to have a
process for validating the work of
other scientists and how this has
influenced the acceptance of current
theories. Explain why scientific proof
is only ever provisional. | Explain and justify why a 'solentific
daim' should be accepted or
rejected by the application of the key
components of validation to the
evidence. Explore the implications of
the provisional nature of scientific
proof. | | 1.1a3 Scientific thinking-
developing argument | and the counterclaim in less
complex and /or familiar contexts
e.g. establishing a wind farm.
Recognise that scientific evidence | and other evidence to back an
argument and the counterclaim in
more complex and /or less familiar
contexts e.g. use of antibiotics.
Describe how scientific evidence | Use criteria to select relevant
scientific data and other sources of
evidence to support or regate an
argument. Explain how scientific
evidence from a range of sources
can be used to support or disprove
theories. | Explain how the use of criteria
improves the effectiveness of
selecting scientific data and other
sources of evidence to support or
negate an argument. Describe
examples where iscentific theories,
applications and models have been
changed by new evidence or
societal norms. | Devise criteria to select relevant
scientific data and other sources of
evidence to support or regate an
argument in familiar contexts.
Explain how scientific theories
applications and models have been
modified by scientists as a result of
new evidence. | Devise criteria to select relevant
scientific data and other sources of
evidence to support or regate an
argument in less familiar contexts.
Explain how scientific theories,
applications and models have been
changed by the strength of new
evidence, changes in societal norms
or values. | | 1.1b Applications, implications and cultural understanding | familiar. Recognise that decisions
about the use and application of
science and technology are | Explain some issues, benefits and drawbacks of scientific developments with which they are familiar. Recognise that decisions about the use and application of science and technology are influenced by society and individua | Evaluate the issues, benefits and drawbacks of scientific developments with which they are familiar. Recognise that different decisions on the use and application of scientific and technological developments may be made in different economic, cultural and social contexts. | Evaluate the relevant issues,
benefits and drawbacks of scientific
developments with which they are
familiar and draw conclusions about
which would be more appropriate.
Recognise that scientific evidence
can be shaped by a number of
factors (bias, cientific status,
political or economic factors) and
how this could illumente the
decisions taken on the application of
scientific and technological
developments | Describe and evaluate examples of
perceived and actual risk arising
from the application of scientific or
technological developments.
Describe the power and limitations
of science in addressing a range of
moral ethi | Evaluate and analyse the potential impact of the application of new scientific and technological developments. Explain how scientific evidence can be shaped by bias, scientific evidence and be shaped by bias, scientific status, political or economic factors and how this could influence the impact of decisions taken on the application of scientific and technological developments | | 1.1c Communication for audience
and with purpose | conventions of various genres for | Use a range of scientific vocabulary
and terminology consistently in
discussions and written work. Adapt
the stylistic conventions of a range
of genres for different audiences and
purposes in scientific writing. | Communicate effectively and use
appropriate scientific terminology
and conventions in discussions and
written work. Adapt the stylicitic
conventions of a wider range of
genres for different audiences and
purposes in scientific writing. | Communicate effectively using a
wide range of scientific terminagy
and conventions in discussions and
written work. Use simple criteria to
judge the appropriateness of a piece
of scientific writing for a particular
audience. | Communicate qualitative and
quantitative evidence effectively
using scientific terminology and
conventions and drawing on abstract
ideas and models as appropriate to
the audience and purpose. Devise
criteria to judge the appropriateness
of a piece of scientific writing for a
particular audience. | Use a wide range of technical
vocabulary and techniques with
fluency, demonstrating
communication and numerical skills
for a range of audiences upurposes. Chically evaluate criteria
udes to judge the appropriateness of
a piece of scientific writing for a
particular audience. | | 1.2 Practical and enquiry skills | YEAR 7 | YEAR 8 | YEAR 9 | YEAR 10 | YEAR 11 | YEAR 11 EXTENSION |