Magnetic Fields & Force

- 1. A point charge, q= $5x10^{-6}$ C and m= $1x10^{-3}$ kg, travels with a velocity of: $\vec{v}=30\frac{m}{s}$ \hat{i} then enters a magnetic field: $\vec{B}=1x10^{-6}$ T \hat{j} .
- a. What is the kinetic energy of the point charge?

Ans.
$$K = \frac{1}{2}mv^2 = 0.45 J$$

b. What is the magnitude of the magnetic force that acts on the charge once it has entered the field?

Ans.
$$|\vec{F}_B| = qvB = 1.5 \times 10^{-10} \text{ N}$$

c. What is the magnetic force $\underline{\text{vector}}$ exerted on the charge just as it enters the field?

Ans.
$$\vec{F}_B = q\vec{v} \times \vec{B} = 1.5 \times 10^{-10} \text{N } \hat{k}$$

d. Why does the magnetic force exerted on the point charge not change its kinetic energy? Ans. The magnetic force is always to the direction of travel.

- 2. Initially at rest, a charged particle, q=+1.6x10⁻¹⁹ C and m=1.67x10⁻²⁷ kg, is accelerated through a region of constant electric field ($\vec{E}=E_y\hat{j}$), across a potential difference of V = 100V. The charged particle then enters a magnetic field: $\vec{B}=10^{-3}$ T \hat{i} .
- a. What is the kinetic energy of the particle just as it enters the magnetic field? Apply the Conservation of Energy to the particle.

Ans.
$$K = \Delta K = \Delta U = q\Delta V = 1.6 \times 10^{-17} \text{ J}$$

b. Determine the magnetic force vector exerted on the charge, in component form, as it enters the field?

Ans.
$$v = \sqrt{\frac{2K}{m}} = 1.38 \times 10^{5} \frac{m}{s} \implies \vec{F}_{B} = q \vec{v} \times \vec{B} = -2.21 \times 10^{-17} N \ \hat{k}$$

c. In which direction is the particle deflected once it enters the field? Calculate the radius of the particles path.

Ans. Clockwise