	orksheet ole Ratio		
	NAME:		
Sho	w all work and remember to use significant figures and units!		
1.	 Predict the products and balance the equation for the reaction between sodium bicarbonate and hydrochloric acid. 		
_	<mark>1</mark> NaHCO ₃ + <mark>1</mark> HCl> <mark>1</mark> NaCl +1 <mark>CO₂ +1 H₂O</mark>		

If you use 3.2 moles of sodium bicarbonate in the reaction in question #1,

a.	how	many	moles of	HCl	would	be used?	

3.2molNaHCO ₃	1molHCl	= 3.2 mol HCl
	1molNaHCO ₃	= 3.2moiHCt

b. how many moles of each product would be produced?

$3.2 molNaHCO_3$	$\frac{1 mol H_2 O}{1 mol NaHCO_3}$	$= 3.2 mol H_2 O$
$3.2 molNaHCO_3$	$\frac{1 mol CO_2}{1 mol NaHCO_3}$	$= 3.2 mol CO_2$
$\boxed{3.2 molNaHCO_3}$	$\frac{1 molNaCl}{1 molNaHCO_3}$	= 3.2molNaCl

Predict the products and balance the equation for the following reaction.

If you burn 4.33 moles of octane, C₈H₁₈.
a. how many moles of oxygen are required?

٦		- 1	
	$4.33 mol C_8 H_{18}$	$25 molO_2$	$= 54.1 mol O_2$
		$2molC_{\circ}H_{1\circ}$	$-$ 54.1 $moiO_2$

b. how many moles of each product are produced?

-	many meres er	Product	t mre produced.
	$\frac{4.33 mol C_8 H_{18}}{}$	$\frac{18molH_2O}{2molC_8H_{18}}$	$= 39.0 mol H_2 O$
	$4.33 mol C_8 H_{18}$	$\frac{16molCO_2}{2molC_8H_{18}}$	