Balancing Act	Name	
Atoms are not	or	during a chemical reaction.
Scientists know that there must be the	number of at	oms on each of
the To balance the chemi	cal equation, you must a	dd in front
of the chemical formulas in the equation.	You cannot or _	subscripts!
Determine number of atoms for each element.	$Mg + O_2$	→ MgO
2) Pick an element that is not equal on both sides of the equation.	Mg =	Mg =
 Add a coefficient in front of the formula with that element and adjust your counts. 	O =	O =
 Continue adding coefficients to get the same number of atoms of each element on each side. 		
Try these:		
\square Ca + \square O ₂ \longrightarrow \square CaO		
Ca = Ca =		
O =		
N = N =		
H = H =		
\square Cu ₂ O + \square C \longrightarrow \square Cu +	\Box CO ₂	
Cu = Cu =	=	
O = O =		

C =

H =

O =

C =

H =

0 =

 H_2O_2 \rightarrow $H_2O + O_2$