CAPE Mathematics Unit 2 Worksheet 4: Sequences and Series

1. (i) Prove by mathematical induction that $\sum_{r=1}^{n} r^3 = \frac{1}{4} n^2 (n+1)^2$ for $n \in \mathbb{Z}^+$. (ii) Hence or otherwise, find in terms of n the sum of the cubes of the first n even positive integers.

2. (i) An arithmetic series has nth term a + (n-1)d where a and d are real constants. Prove that the nth partial sum S_n is given by $S_n = \frac{n}{2} (2a + (n-1)d)$. (ii) Hence express $\ln(2 \times 2^2 \times 2^3 \times ... \times 2^{48} \times 2^{49})$ in the form $k \ln 2$ where k is an integer.

3. Express the infinite series $3 + 5 + 7 + 9 + \dots$ in sigma notation.

4. Find the sum of the convergent geometric series $S = 2 + \frac{1}{2} + \frac{1}{8} + \frac{1}{32} + ...$

5. (i) Given that S_r denotes the sum of the first r positive integers, prove by mathematical induction that $S_r = \frac{1}{2}r(r+1)$.

(ii) Hence, find the sum $S = \sum_{r=1}^{n} S_r$ in terms of n.

6. The common ratio of a geometric series is given by $r = \frac{5x}{4 + x^2}$. Find all the values of x for which the series is which the geometric series converges.

7. A sequence $\{u_n\}$ of real numbers satisfies $u_{n+1}u_n = 3(-1)^n$; $u_1 = 1$.

(a) Show that

(i)
$$u_{n+2} = -u_n$$

$$(ii) u_{n+4} = u$$

(ii) $u_{n+4} = u_n$ (b) Write the FIRST FOUR terms of this sequence.

8. Verify that the sum, S_n , of the series $\frac{1}{2} + \frac{1}{2^3} + \frac{1}{2^5} + \dots$, to n terms, is $S_n = \frac{2}{3} \left(1 - \frac{1}{2^{2n}}\right)$.

9. Three consecutive terms, x-d, x and x+d, d>0, of an arithmetic series have sum 21 and product 315. Find the value of

(i) x (ii) the common difference d.

10. Three sequences are given below. 1, 4, 7, 10, ... 1, $-\frac{1}{4}$, $\frac{1}{7}$, $-\frac{1}{10}$, ...

$$1, -\frac{1}{4}, \frac{1}{7}, -\frac{1}{10}, \dots$$

$$(-1)^1$$
, $(-1)^4$, $(-1)^7$, $(-1)^{10}$, ...

 $(-1)^1$, $(-1)^4$, $(-1)^7$, $(-1)^{10}$, ... Determine which of the sequences is convergent, divergent or periodic and state which of the sequences is an arithmetic sequence.

11. (i) Show that the series

$$\log_a b + \log_a (bc) + \log_a (bc^2) + ... + \log_a (bc^{n-1}),$$

where a, b, c > 0,
$$n \ge 1$$

is an arithmetic progression whose sum, S_n , to n terms is $\frac{n}{2}\log_a b^2 c^{n-1}$.

(ii) Find S_n when n = 6 and a = b = c = 5.