Set Theory Symbols and Definitions

Symbol	Name	Definition	Example
()	Set	A collection of elements	A = {2,7,8,9,15,23,35}
$A\cap B$	Intersection	Objects that belong to set A and set B	If set A = $\{1,2,3\}$ & set B = $\{2,3,4\}$ then A \cap B = $\{2,3\}$
$A \cup B$	Union	Objects that belong to set A or set B	If set A = $\{1,2,3\}$ & set B = $\{4,5,6\}$ then A \cup B = $\{1,2,3,4,5,6\}$
$\Lambda \subseteq B$	Subset	Set A is a subset of set B if and only if every element of set A is in set B.	If set $A = \{a,b,c\}$ & set $B = \{a,b,c\}$ then $A \subseteq B$.
$\Lambda \subset B$	Proper Subset	Set A is a proper subset of set B if and only if every element in set A is also in set B, and there exists at least one element in set B that is not in set A.	If set $A = \{a,b\}$ & set $B = \{a,b,c,d\}$ then $A \subseteq B$.
Λ¢Β	Not Subset	Subset A does not have any matching elements of set B.	If set $A = \{a,b\}$ & set $B = \{c,d,e,f\}$ then $A \nsubseteq B$.
$\mathbf{A} \supseteq \mathbf{B}$	Superset	Set A is a superset of set B if set A contains all of the elements of set B.	If set $A = \{d,e,f\}$ & set $B = \{d,e,f\}$ then $A \supseteq B$.
Λ⊃B	Proper Superset	Set A is a proper superset of set B if set A contains all of the elements of set B, and there exists at least one element in set A that is not in set B.	If set $A = \{4,5,6\}$ & set $B = \{5,6\}$ then $A \supset B$.
Λ⊅В	Not Superset	Set A is not a superset of set B if set A does not contains all of the elements of set B.	If set $A = \{a,f,c,d\}$ & set $B = \{b,f\}$ then $A \not\supset B$.
$\mathcal{P}(A)$	Power Set	Power set is the set of all subsets of A, including the empty set and set A itself.	If set A = $\{1,2,3\}$ then $\mathcal{P}(A) = \{1,\{1\},\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{1,2,3\}\}$
$\Delta = \mathbf{B}$	Equality	Set A & set B contain the same elements.	If set $A = \{2,3,4\}$ & set $B = \{2,3,4\}$ then $A = B$.