Simulating Rutherford's Gold Foil Experiment

Purpose: To simulate Ernest Rutherford's Gold foil experiment and to

indirectly measure the radius of a nuclei.

Background: You come up with the background

Materials:

Paper with circles marble

carbon paper

ruler

Procedure:

- · Measure the dimensions of the square and record
- Place carbon sheet of paper on top of paper with circles and tape it down
- Drop a marble onto the paper from a height of at least 2 feet 100 times
- Record the # of hits and non-hits

Data Table:

Number in or on the circle:

Number outside the circle:

Length of Rectangle (cm)=

Width of Rectangle (cm)=

Use the following to calculate the radius of the circles

 $\frac{10 \times (area \text{ of circle})}{Area \text{ of square}} = \frac{\# \text{ hits (in the circle)}}{\text{total number of drops}}$

Conclusion:

Restate the problem Answer the problem

Errors-Questions:

- 1. What does the marble represent in this simulation?
- 2. What two things did Rutherford conclude from the results of his experiment?
- 3. If Rutherford shot 5.00×10^7 alpha particles and only recorded 100. Hits, how many gold atoms are present if the radius of a gold atom is 1.44×10^{-14} meters and the gold foil has an area of 1.00 m².