7-1, 7-2: Ratios and Proportions; Similar Polygons

Date___

Ratio: Comparison of 2 numbers.

Written as: $\frac{a}{b}$ or $a \div b$ or a : b

Equivalent Ratios: Ratios which have different forms but are equal in value

 $\frac{1}{3} = \frac{2}{6} = \frac{8}{24} = \frac{x}{3x}$ *Multiply or divide both numbers by an equal amount to produce an equivalent ratio

Simplest form $\left(\frac{1}{3}\right)$ - fraction reduced to lowest terms

Example: Sides of a triangle are in the ratio of 3:4:5. Perimeter of the $\Delta = 72$. Find the length of

each side. Let $\underline{3}x = 1^{st}$ side; $\underline{4}x = 2^{nd}$ side; $\underline{5}x = 3^{rd}$ side

Equation:

Example: Out of 1000 households surveyed, 460 had at least one dog or cat as a pet. What is the ratio of pet owners to households?

 $\frac{3}{5} = \frac{9}{15}$ or $\frac{2}{3.5} = 9.15$ Means **Proportion**: Equation where 2 ratios are equal:

The product of the means (5 x 9) equals the product of the extremes (3 x 15) (cross-products are equal)

Cross Multiply to determine if 2 ratios form a proportion:

$$5 \times 9 = 3 \times 15$$
 or $45 = 45$ (Yes, it is a proportion!)

Example: Do $\frac{4}{16}$ and $\frac{5}{24}$ form a proportion?

Cross multiply to solve a proportion:

Examples:
a)
$$\frac{4}{x} = \frac{12}{60}$$

b)
$$\frac{3x+3}{2} = \frac{7x-1}{5}$$
 c) $\frac{x}{2} = \frac{x-2}{x+6}$

c)
$$\frac{x}{2} = \frac{x-2}{x+6}$$