Bio 118 Summer 2003

Homework #2 Name

1. Protein-coding genes from one organism may be expressed in other organisms, even in other kingdoms or across the eukaryote-prokaryote divide. This is the basis for the growing, and controversial, practice of commercial genetic engineering.

For example, corn, cotton, other crops plants are now routinely engineered to express the <u>Cry</u> protein. This protein is from the <u>soil bacterium Bacillus thuringiensis</u> (Bt). It kills caterpillars, including many of the important crop pests, but is non-toxic to humans. However, first attempts to express Cry protein in plants were unsuccessful. Researchers introduced <u>mutations in the native Cry gene sequence</u> in order to achieve <u>high level of expression</u>. They produced several versions of the Cry gene, each better than preceding version, until they had something that they could take to market. (Gleave, et al (1998) Molecular Breeding 4:459)

A. For each of the following observations, suggest $\underline{\text{one type of change}}$ in the gene sequence that would give observed change in expression:

Expression Before	Expression After Mutation	Change in DNA?
wild type Cry gene:	Abundant transcripts (nuclear):	ADD A STRONG EUKARYOTIC
No Cry RNA transcripts	low Cry mRNA (cytoplasmic);	PROMOTER. THE BACTERIAL
No Cry protein	Cry mRNA too short;	PROMOTER ISN'T USED BY RNA
1	very little Cry protein	POL II!
(= version 1.0)	(= version 1.1)	
	Abundant Cry mRNA;	REMOVE "CRYPTIC" SPLICE
	Cry mRNA too short;	SITES = SEQ THAT MAY LOOK
same as version 1.1	very little Cry protein	LIKE SPLICE STES WITH NO
		CONSEQUENCES FOR THE
		BACTERIA. IN THE PLANT =>
	(= version 1.2)	PARTIAL SPLICING => NO
		NUCLEAR EXPORT
	Abundant Cry mRNA;	REMOVE "CRYPTIC" POLY-A
	Cry mRNA full length;	\underline{SITES} . = SEQ THAT MAY LOOK
same as version 1.2	small amount of Cry protein	LIKE "AAUAAA" IN CODING
		SEQUENCE WITH NO
		CONSEQUENCES FOR THE
	(= version 1.3)	BACTERIA. IN PLANT =>
		PREMATURE TERMINATION OF
		TRANSCRIPTION
	Abundant mRNA;	CHANGE CODON SEQUENCES
	mRNA full length;	TO REFLECT PLANT CODON
	large amount of Cry protein	BIAS. BACTERIAL CODON BIAS
same as version 1.3		= VERY SLOW TRANSLATION IN
		PLANT CELL.
	(= final product!	
	= Frankenfood v.2)	

B. One of the changes above involved the introduction of the promoter sequence from the <u>Cauliflower Mosaic Virus (CMV)</u>, a common plant virus. Briefly, why did the genetic engineers choose a promoter from a viral gene?

VIRAL PROMOTERS = VERY STRONG, CONSTITUTIVE PROMOTERS. ENGINEERS WANTED TO GET HIGH LEVEL OF EXPRESSION IN ALL CELLS, SINCE CMV IS A PLANT-SPECIFIC VIRUS, THEY EXPECTED THAT IT WOULD BE RECOGNIIZED BY THE GENERAL & CONSTITUTIVE TF'S IN THE PLANT CELL.