| Name: | | | | Date | Period | | |-------|--|--|-------------------|----------------------------------|--------|--| | I. | Calculating Frequency & Wavelength of EM radiation | | | | | | | A. | <u>Defii</u> | Defining variables | | | | | | | а. | Example:
What is the variable that we use | to represent fre | quency (Hz)? = F (ak | a υ)? | | | | ъ. | What is the variable that we use | to represent was | velength (m) $=$ \mathbf{w} | | | | | c. | What is the variable that we use Speed of Light $(m/s) = c$
Note: <u>all</u> Electromagnetic Spectr | • | el at this same speed | | | | | d. | Speed of light is a constant. How | w many m/s does | s light travel? 3.00*10 8 | | | | В. | Deriving equations | | | | | | | | Given | the formula $C = \mathcal{F}^*\mathcal{W}$ (ake | $a c = v*\lambda$ | | | | | 1. | What is the formula for calculating \mathcal{F} (aka υ)? $\mathcal{F} = \mathbf{c}/\mathbf{w}$ | | | | | | | 2. | What is the formula for calculating $\mathcal{W}(\lambda)$? $\mathcal{W} = \mathbf{c}/\mathbf{f}$ | | | | | | | C. | | | | | | | | 1. | Violet light has a wavelength of 4.10×10^{-12} m. What is the frequency? $f=c/w$ = $3.00*10^8/4.10\times10^{12}$ = 0.73×10^{20} = $7.3*10^{19}$ m | | | | | | | 2. | Green light has a frequency of 6.01×10^{14} Hz. What is the wavelength? $f=c/w$ = $3.00*10^8/6.01\times10^{14}$ = $0.499*10^{-6}$ m = $4.99*10^{-7}$ m | | | | | | | 3. | What is the wavelength (in meters) of the electromagnetic carrier wave transmitted by The Sports Fan radio station at a frequency of 640 kHz?(Hint: convert kHz into Hz by multiplying by 10^3 .) $f=6.4x10^{6+2}=6.4x10^{6+2}=6.4x10^5$ w=3.00x10 ⁸ /6.4*10 ⁵ 0.47 x 10 ⁽⁸⁻⁵⁾ Hz = 0.47 x10 ³ Hz = 4.7x10 ² Hz | | | | | | | 4. | Calculate the wavelength of radiation with a frequency of 8.0×10^{14} Hz.
$\mathbf{w} = \mathbf{c}/\mathbf{f}$ = $3.00 \times 10^{8}/8.0^{*}10^{14}$ = $-0.375 \times 10^{(8\cdot14)}$ m = -0.375×10^{6} m = 3.75×10^{-7} m | | | | | |