Wavelength, Frequency, Speed & Energy Worksheet E = hv $E = h c/\lambda$ $c = \lambda v$ $v = c / \lambda$ $\lambda = c / v$ | c = speed of light $(3.0 \times 10^8 \text{ m/s})$
λ = wavelength
ν = frequency
E = energy
h = Planck's constant $(6.6262 \times 10^{-34} \text{ J} \cdot \text{s})$ | |--| | 1. Calculate the λ given the \mathbf{v} of radiation is 5.10 \times 10 ¹⁴ s ⁻¹ | | | | 2. Calculate the frequency of red light with $\lambda = 6.50 \times 10^{-7} \text{m}$ | | The more I shave my face, the shorter my beard is an example of a <u>inversely</u> proportional or <u>directly</u> proportional relationship? | | 4. The more I lift weights, the stronger I become, is an example of an <u>inversely</u> proportional or <u>directly</u> proportional relationship | | 5. The longer the wavelength, the the frequency, is an relationship | | 6. Which color has the longest wavelength? | | 7. Which color has the shortest wavelength? | | 8. On the EM Spectrum, which type of wave has the longest wavelength? | | 9. On the EM Spectrum, which type of wave has the shortest wavelength? | | 10. What is the energy of x- radiation with a 1×10^{-6} m wavelength ? | | 11. What is the energy (Joules) of Violet light with a frequency = $7.50 \times 10^{14} \text{s}^{-1}$. | | 12. The higher the frequency, the (higher / lower) the energy. This is an example of a/an (inverse/direct) relationship. | | 13. The higher the wavelength, the (higher / lower) the energy. This is an example of a/an (inverse/direct) relationship. | | 14. Which color has the most energy? | | 15. Which color has the least energy? | | 16. On the EM Spectrum, which type of wave has the most energy? | | 17. On the EM Spectrum, which type of wave has the least energy? | | | 1