3. Prime Numbers

- (135) Using computer software, write a program

 - Using computer software, write a program (a) to generate all Mersenne primes up to $2^{525} 1$; (b) to determine the smallest prime number larger than $10^{100} + 1$.
- (136) Write a program that generates prime numbers up to a given number N. One can, of course, use Eratosthenes' sieve.
- (137) Use a computer to find four consecutive integers having the same number of prime factors (allowing repetitions).
 (138) (a) By reversing the digits of the prime number 1009, we obtain the num-
- ber 9001, which is also prime. Write a program to find the prime numbers in [1,10000] verifying this property. (b) By reversing the digits of the prime number 163, we obtain the number 361, which is a perfect square. Using computer software, write a program to find all prime numbers in [1, 10000] with this property.
- (139) Using a computer, find all prime numbers $p \le 10\,000$ with the property that p, p+2 and p+6 are all primes.
- (140) Let p_k be the k-th prime number. Show that $p_k < 2^k$ if $k \ge 2$.
- (141) If a prime number $p_k > 5$ is equally isolated from the prime numbers appearing before and after it, that is $p_k p_{k-1} = p_{k+1} p_k = d$, say, show that d is a multiple of 6. Then, for each of the cases d = 6, 12 and 18, find, by using a computer, the smallest prime number p_k with this property.
- (142) Prove that none of the numbers

12321, 1234321, 123454321, 12345654321, 1234567654321,

 $123456787654321,\ 12345678987654321$

- (143) For each integer $k \ge 1$, let n_k be the k-th composite number, so that for instance $n_1 = 4$ and $n_{10} = 18$. Use computer software and an appropriate algorithm in order to establish the value of n_k , with $k = 10^{\alpha}$, for each integer $\alpha \in [2, 10]$.
- (144) For each integer $k \geq 1$, let n_k be the k-th number of the form p^{α} , where p is prime, α a positive integer, so that for instance $n_1=2$ and $n_{10}=16$. Use computer software and an appropriate algorithm in order to establish
- the value of n_k , with $k = 10^{\alpha}$, for each integer $\alpha \in [2, 10]$. (145) Find all positive integers n < 100 such that $2^n + n^2$ is prime. To which class of congruence modulo 6 do these numbers n belong?
- (146) Show that if the integer $n \ge 4$ is not an odd multiple of 9, then the corresponding number $a_n := 4^n + 2^n + 1$ is necessarily composite. Then, use a computer in order to find all positive integers n < 1000 for which a_n is prime.
- (147) Consider the sequence (a_n) defined by $a_1=a_2=1$ and, for $n\geq 3$, by $a_n=n!-(n-1)!+\cdots+(-1)^n2!+(-1)^{n+1}1!$. Use a computer in order to find the smallest number n such that a_n is a composite number.
- (148) The mathematicians Minác and Willans have obtained a formula for the n-th prime number p_n which is more of a theoretical interest than of a