Chapter 10 Review and Reinforcement Packet Answer Key

All of the numbers in the answers are rounded correctly!

10-1 Review and Reinforcement

- A mole is defined as the number of atoms of an element equal to the number of atoms in exactly 12.0 g of carbon-12, which is 6.02 x 10²³ atoms (or Avogadro's number).
- The formula mass is the sum of the atomic masses of all of the atoms in a compound.
- 3. A formula unit is the lowest whole-number ratio of elements in an ionic compound; the representative particle of an ionic compound. Avogadro's number is 6.02×10^{23} , the number of representative particles in a mole.
- 5. Molar mass is the mass, in grams, of one mole of a substance.
- carbon-12
- true
- 8. formula units
- 9. true
- 10. moles
- 11. 100.09 amu
- 12. 120.38 amu
- 13. 40.00 amu
- 14. 74.55 amu
- 15. 175.33 amu
- 16. 63.02 g/mol
- 17. 17.04 g/mol
- 18. 136.15 g/mol
- 19. 110.27 g/mol
- 20. 162.20 g/mol

10-2 Review and Reinforcement

- 1. Divide the mass of the substance by its molar mass.
- Multiply the number of moles by 6.02×10^{23}
- Divide by the molar mass and then multiply by 6.02×10^{23} .
- 4. 42
- 5. 2.7
- 6. 0.691
- 7. 2.47×10^{24}
- 8. 2.74
- 9. 6.85
- 10. 1.63×10^{24}
- 11. 2.4 x 10²³ atoms 12. 1.38 x 10²⁴ atoms 13. 9 x 10²⁴ atoms

*Note: This problem was kind of tricky. If it had asked for molecules of NO₂, the answer would be 3 x 10^{24} molecules. But in each molecule of NO₂, there are 3 atoms: 1 atom of N and 2 atoms of O. So, to find the number of atoms in 5 moles you must multiply your

- answer by 3. 14. 3×10^{22} formula units 15. 5.75×10^{23} molecules
- 16. 22.3 mol
- 17. 17 L
- 18. 0.275 mol, 6.16 L